
By A. S. Smogorzhevski
Read or Download Acerca de la Geometría de Lobachevski PDF
Best geometry and topology books
Alexander I. Bobenko (auth.), Alexander I. Bobenko, John M.'s Discrete Differential Geometry PDF
Discrete differential geometry is an lively mathematical terrain the place differential geometry and discrete geometry meet and have interaction. It presents discrete equivalents of the geometric notions and techniques of differential geometry, equivalent to notions of curvature and integrability for polyhedral surfaces.
- A treatise on the analytical geometry of the point, line, circle, and conical sections (1885)
- The Geometric Topology of 3-Manifolds (Colloquium Publications (Amer Mathematical Soc))
- General Topology III: Paracompactness, Function Spaces, Descriptive Theory
- Encyclopaedie der mathematischen Wissenschaften und Anwendungen. Geometrie
Additional resources for Acerca de la Geometría de Lobachevski
Sample text
52) for the worldvolume dimensions of the electric and magnetic brane, we can relate the sigma-model frame to the Einstein frame by σ E gµν = eωσ φ gµν , a ωσ = − . 80) 7 Except for p = 0 which has no timelike components and for P which has the Hamiltonian as its timelike µ component. Self-dual charges Z(D/2) also correspond to only a single brane. 80) has an overall dilaton factor and a modified kinetic term for the dilaton Lσ(D, p) = eδσ φ R dφ ∧ dφ − + γσ 1 2 F(p+2) ∧ F(p+2) . 81) which are given by δσ = (D − 2)a , 2d γσ = D−1 2 4 δ − .
1 The D3-brane . . . . . . 1 Interacting theories . . 2 Decoupling limits . . . 2 Anti-de-Sitter spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 36 36 38 40 43 . . . . . 2: The interpolating D3-brane geometry. The gravitational dynamics in the presence of a stack of N D3-branes separates into two regimes.
Acerca de la Geometría de Lobachevski by A. S. Smogorzhevski
by Donald
4.2